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A F U L L - S T R E N G T H  O R I F I C E  U N D E R  C O N D I T I O N S  

OF  G E O M E T R I C  N O N L I N E A R I T Y  

V. D. Bondar' UDC 539.3 

In studies of the equilibrium of a deformable solid body using any model of elasticity, both direct and 
inverse problems are of interest. In inverse problems, the quantities determined in direct problems are given 
beforehand, and the quantities that  are usually given are to be determined. The problem of a full-strength 
orifice also belongs to the group of inverse problems of elasticity. 

A construction with an orifice begins to disintegrate or lose its supporting capacity at the sites of the 
highest stress concentration on the contour of the orifice. This does not proceed over the entire contour at 
once, but first at certain points, and this determines the admissible level of loads. A full-strength orifice is 
distinguished by equal stress concentration over the entire contour. Such a contour preserves or loses strength 
simultaneously at all points. A full-strength orifice usually collapses at a higher level of loads, and this 
determines the effectiveness of these constructions. 

Full-strength orifices were found within the framework of linear elasticity theory and plasticity theory 
in a number of works (see, e.g., [1, 2]). Below, this problem is studied in V. V. Novozhilov's variant of 
geometrically nonlinear elasticity [3]. 

We consider an infinite plate S which is weakened by an orifice with smooth contour L. It is assumed 
that volume forces are absent, the stresses and rotation at infinity are given, and the orifice contour is loaded 
by normal and tangential stresses of constant intensity. It is required to determine the stress and rotation 
fields and an orifice shape such that the stresses on the surfaces normal to the contour would also be constant 
quantities. Thus, the conditions at infinity and on the contour have the form 

Pxx oo oo ~ = w ~  at c~; (1) = P L ,  Pyy = PSy, = Ply ,  

Pnn=p=const, P u = a = c o n s t ,  P m = r = c o n s t  at L, (2) 

where P~x, Pyy, Pry, and Wxy are the stress and rotation components on the Cartesian axes x and y; Pn,~, 
Pu, and P,~t are the stress components on the natural axes of the contour [the normal n and the tangent t 
(Fig. 1)]; p and r are given constants; and a is to be determined. These conditions formulate the problem of 
a full-strength orifice. 

We shall solve the formulated problem using the geometrically nonlinear elasticity variant [3]. This 
variant assumes that the elongation-shears of material elements are on the same order as the squares of their 
rotation; because of this, the strain components are functions that are linear with respect to the former 
quantities and square with respect the latter. It is also assumed that the mechanical behavior of the material 
is described by Hooke's law. 

The assumptions of this model are usually realized in flexible bodies, and in bodies with orifices 
near their internal and external boundaries. Precisely the latter circumstance is responsible for the use of 
Novozhilov's model for the solution of the formulated problem. 

As was established in [4], in this model, stresses and rotation under planar deformation can be expressed 
in terms of complex potentials c2(z ) and r  by nonlinear formulas which generalize Kolosov's formulas of 
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linear elasticity [5] and, in the absence of volume forces, have the form 

p l l  = p22 = _ 2 ( z ~ _ t . .  ~bt(z) ) _ 2]r  _ c p ( z ) ) ,  

= = ) + 

w2'=w'2=2k(~'(z)-~'(z)), k = ( 1 -  u)/#. 

(3) 

Here z = x + iy and ~" = x - iy are complex variables; # is the modulus of shear; v is Poisson's ratio; the 
bar above a quantity indicates complex conjugation; the prime denotes the derivative of the function; and 
Pa~ and w a~ are the complex components of stresses and rotation related to the Cartesian components of 
the same quantities by the expressions 

p n  = p22 = Pzz - Pyy q- 2iPzy, p21 = p12 = Pzz "4- Pyy, w Ix = w 22 = O, w 21 = w 12 = 2iwxy. (4) 

The linear-elasticity formulas differ from formulas (3) in the fact that they do not have nonlinear terms 

containing the parameter k [5, 6]. 
To the system of constant contour forces (2) corresponds a zero-order main vector. Indeed, if we denote 

by a the angle between the normal to the contour and the x axis (Fig. 1), then for the Cartesian components 
of the normal n , ,  ny and of the stress vector pz, py we have 

dy 
•z  ~ COSO~ ~--- ~ ,  

dx dy dx 
ny = sin a = - d--~' pz = Pn cos a - Pt sin a = p ~s  + r ~ss' 

dx dy 
Py = Pn s ina  + p t  cosa  = - p ~  + r ~S' 

where s is the arc of the contour L. It is readily seen that the Cartesian (and also complex) components of the 
main vector of the contour forces vanish by virtue of the single-valuedness of the contour equations x = x(s )  

and y = y(s): 

L L L L L L 

Generally speaking, in a simply connected infinite domain, the complex potentials are nonsingle-valued. 
The requirement that the stresses and rotation should be single-valued leads to the single-valuedness of the 
functions ~2(z) and r  [4]. The potentials themselves are representable in terms of the single-valued functions 

Tl(z) and el(Z) by the formulas 

~p(z) = r r  = B l n z  + el(Z),  B = const. (5) 

Expanding the single-valued functions into the Laurent series 
co oo 

 x(z) = A,,z ,;l(z) = B.z 
- - 0 0  - - 0 0  

and using the limitedness of the stresses and rotation at infinity (3), we find that potentials (5) have the form 

~2(z) = A l z  + ~o(z) ,  ~b(z) = B l n z  + B l z  + Co(z),  (6) 

where ~0(z) and O0(z) are functions that are holomorphic in the neighborhood of an infinitely distant point; 
A1 and B1 are determined by the conditions at infinity, and B is determined by the main vector of the contour 

forces: 
co co [ 

,o(z)= B_nz -n, 
o o 2~ (7) 
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y~ 

. 

z=x+ly "t ~ = r e lO 

Fig. 1 Fig. 2 

A1 = k ( P ~  + P;y) + (w~)  2 + 2iw , B1 = "~(P;y - e~o~ + ZiPpy).  

Let us map conformally the exterior S of the orifice onto the exterior S' of a circle with unit radius 
(Figs. 1 and 2) with correspondence of infinitely distant points by means of a holomorphic function: 

z = w(C) = cC + wo(C), c = const, wo(r = ~ c,C-", C = "e ~~ ~ S'. (S) 
0 

We assume that the constant c is real and positive (c = ~ > 0). This corresponds to the absence of rotation 
of the neighborhood of an infinitely distant point in mapping. Then the complex potentials (6) and their 
derivatives are written as 

OO OO 

~(z) = ~(C) = cA1C + ~ a . C - " ,  r  = r = cB1C + ~ b . r  
o o (9) 

~'(C) r162 ~(z) = r  = r = ~(r r  = ~ ' (z )  - w'(C---) - r r  = ~"(~) - ~'(C)'  w'(C) 

and the complex stresses and rotation (3) take the form 

p l l  = p22 = 2 + 

(10) 

y' The normal n and tangent t at point N on contour L can be regarded as the Cartesian x I, axes 
rotated about the x, y axes through angle a between the normal and the x axis (see Fig. 1). With allowance 
for (4), the formulas for the transformation of the complex stress components with rotation of the axis through 
this angle are written as 

-Px'=' - Py'y' + 2iP=,y, = p t l l  = p l l  e-2ia, Pz'z' + Py'y' = p,21 _- p21. (11) 

The magnitude of the angle o~ is determined by means of transformation of the elementary displacement along 
the normal to the contour by conformal mapping (Figs. 1 and 2): 

C dz = Idzl e ~, dC = IdCI e i(0-r) = - IdCI ~-~, (12) 

eiC, _ dz w' d C _ w'(C) C e2iO, = w'(C) C 
Idzl Iw'l IdCt Iw'(C)l ICI' w'(C) ~" 

After this, formulas (11) [with allowance for (12) and the coincidence of the axes x' = n and y' = t] have the 
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f o r m  

Pnn -- Pit - 2iPnt ~ wt(() )911, Pnn +Ptt = p21 on L. (13) 
(w'(() 

Finally, use of boundary conditions (2) and representations (10) of complex stresses reduces (13) to the 
following boundary problem for the complex potentials and the mapping function: 

g--p+2iT-- 2(2 {w'(()gl(()+~'(()[w(()(l+kd~(())-k~o(()]}, I([=I; :14) 
~'(() 

a+p=2[r [(1=1. (15) 
The expressions of mapping (8) and potentials (9) allow us to establish that the functions considered 

have the following orders at infinity: 

~(() = e (  + O ( r  ~ ' ( ( )  = c + O ( r  ~ ( ( )  = BI + O ( U 2 ) ,  ( :6)  

qo(() = cA1r -F O((~ ', r162 = A1 + O((-2), ~t(() = 0(4-3). 

The potential r  as can be seen from (16), is limited at infinity and is determined by boundary 
condition (15), which expresses the constancy of the combination of the real and complex parts of the potential 
on the contour. These conditions are satisfied if the potential is considered constant everywhere in the infinite 
domain: r162 =cons t .  Using the corollary of relations (10) r  = (l/(4k))[kP 21 + w21(1 -- w21/4)] and 
expression (7), we find that this constant is determined by the conditions at infinity: 

1 [kp2ool+ 21(i w-21"~I = 1 [k(P~+/9~y)~176 +(w~)2+2iwxooy] =A1. 
�9 :r = - 4 ) 1  

(17) 

If the potential ~(()  is known, condition (15) becomes the equation 

~r = P ~  + P ~  - p. (18) 

Thus, according to (18), ~r is determined by the contour and peripheral loads. 
By virtue of (17), ~ ' (()  = 0, and hence equality (14) becomes the boundary condition for finding the 

functions w(() and q/((): 

E w ' ( ( ) = ( 2 w ' ( ( ) ~ ( ( ) ,  [ (1=1,  E = E a + i E 2 = ( 1 / 2 ) ( P ~ + P ~ ) - p + i r .  (19) 

Using analytical continuation, we represent (19) in the form of a functional equation which is true on the 
exterior of the unit circle, 

Ew:(1/( )  = (2w'(()q/((), ( e S' (20) 

and use it to determine the desired functions. 
We shall seek the constituent w0(() of mapping (8) in the form of a polynomial in odd powers of the 

argument, so that the mapping itself takes the form 

WO(~) = ~ C2k+1~ -(2k+1), W(( )  = C( -1- C1( -1  -a t- C3( - 3  J r ' . . -  -4- C21+1(-(21+1), c = : .  (21) 

The polynomial degree is found from the condition that the orders of the left- and right-hand sides of Eq. (20) 
coincide at infinity. 

We establish on the basis of (21) that the derivatives of the mapping entering into (20) have the 
following orders at infinity: 

~o'(C) = c - c : (  -2  - . . .  - ( 2 / +  1)c2t+1r -(2z+2) = 0 ( ~ ~  

tb'(1/() = c -  el( 2 - . . .  - (2/+ 1)e2l+l( 21+2 = 0((21+2). 
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From here and from (16), it can be seen that, according to Eq. (20), O((2t+2) = O(ff 2) for ~ --* c0. 
Consequently, the orders of the sides of the equation agree for I = 0. Thus, the mapping function (21) 
contains two parameters (real and complex) and has the form 

z = w(~) = c(  + c l / (  = n ( (  + m / ( ) ,  n = ft = c, m = m x  + ira2 = c l /c .  (22) 

Using (20) and (22), we find another potential 

q/(~) = E(1 - ~ 2 ) / ( ( 2  _ m), (23) 

where the constant E is given by formula (19). 
To potentials (17) and (23) correspond the following values of the complex components of stresses and 

rotation (10): 

m~ 2 -  1 p 2 , =  p~r + GT,  w 21 = 2 i w ~ .  (24) p l l  = p22 = 2 E  ~ 2 _ ~ '  

Letting ( ~ cr in the first of these, we obtain the equality P ~  = 2Era ,  which, with allowance for conditions 
(1) and (19), determines the parameter m: 

�9 ( ~  

P*r162 - PY~ + 2*PzCY (25) 

Here 
o o  o o  o o  (2~ (30 o o  o o  (30 ( P ~  - P~y)(P~x + P~y - 2p) - 4rP~y P ~ y ( P ~  + P~y - 2p) + 7-(P~ - P~y) (26) 

ml = ( P ~  + P;7 - 2p)2 + 4v2 , m2 = 2 (Pxr + P;7 - 2p)2 + 4v2 

Thus, the parameter m appearing in (22) is determined by the given contours and peripheral loads. 
In accord with the choice of a mapping, the full-strength contour will be the curve into which the 

circumference of the unit circle is mapped in the case of the mapping function (22). Assuming that ~ = exp(i0) 
for points on this circumference and separating the real and complex parts in (22), we obtain parametric 
equations for the full-strength contour: 

x = n [ ( l + m l ) c o s O + m 2 s i n O ] ,  y = n [ m 2 c o s O + ( 1 - - m l ) s i n O ]  

o r  

m 2 x - - ( l + r n O y = - n ( 1 - m  2 - m 2 ) s i n O ,  ( 1 - - r n l ) x - - m 2 y = n ( 1 - - m  2-rn22)cos& (27) 

Squaring each of equalities (27) and adding up the results, we exclude the variable parameter 0 and obtain 
an explicit equation of a full-strength contour in the form of a central two-order curve: 

al lX2+2a12xyTa22y2+2alax+2a23y+a33 0, all  (1 m ,2-- 2 ( 1 + m 0 2 + m  2, = = -- 1) -t-m2, a22 = (28) 

a33 = --n2(1 -- rrt21 -- m2) 2, a12 = a21 = --2m2, a13 = a31 = 0, a23 = a32 = 0. 

The invariants I,  D, and A of this curve, and also the quantity A' determined by the curve, have the form 

I = a u + a 2 2 = 2 ( 1 + m 1 2 + m 2 ) ,  D = l  a n  a12 ] = ( l _ m  2 - m 2 )  2, 
I a21 a22 I 

A = det(akl)3,1=l = --n2(1 -- m~ -- m2) 4, (29) 

A ' =  I TMa32 a33a23 I q-I TMa31 a131=a33 -2n2(1 + m2"4-m2)(1-  m 2 -  m22)2" 

In the general case, the contour and peripheral loads and, hence, parameters (26) are independent of 
one another, and this indicates the validity of the inequality 

i - m l  - # 0 ,  ( 3 0 )  

which is equivalent, by virtue of (25), to the inequality ( P ~  - p ~ ) 2  + 4(p~)2  .r ( p ~  + p ~  _ 2p)2 + 47.2. 
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Then, according to (29), D > 0 and A / I  < 0 and, according to the known criterion [7], Eq. (28) of 
a full-strength contour is the equation of an ellipse. The center of the ellipse coincides with the Cartesian 
coordinate origin. The angle/3 between the positive direction of the abscissa and the axes of symmetry of the 
ellipse is defined by the relation 

2a12 rn2 
tan 2fl - - - - ,  (31) 

all -- a22 ml 

and its semi-axes a and b are expressed in terms of the invariants and roots A1 and A2 (X1 ~ A2) of the 
characteristic equation A 2 - IX + D = 0 and in terms of parameters (26) by the formulas 

a 2=-hl-~A =-~n 2 ( I+v t~-4D)  =n2(l+b/m2 l+m 2)2 
A 

b 2 = -X2  ~ = y 

Hence, 

where the upper sign appears for ~rn~ + m~ < 1 and the lower sign for ~/rnl 2 + m~ > 1. In turn, the parameters 
of the ellipse are expressed in terms of the semi-axes as 

1 
n = ~ (a+ 4- b+), ~/ml 2 + rn22 - a:t= ~ b=t= 

a:e 4- b:t=' 

whence it can be seen that the parameter m in (22) characterizes the shape of the ellipse, and the parameter 
n its dimensions; the former is determined by the load applied to the plate, and the latter remains arbitrary. 
The fact that the semi-axes of ellipse (32) are proportional to the arbitrary parameter, and the slope of the 
axes of symmetry (31) is independent of it means that full-strength contours form a one-parameter set of 
similar ellipses. This result is similar to the conclusion obtained in the linear theory of elasticity [1] by a 
different method. 

When invariants (29) and parameters (26) are related to one another by 

0 = I  2 - 4 0 = 1 6 ( m  2 + m  2) ( m l = m 2 = 0 ) ,  

the semi-axes (32) of the ellipse coincide, and the directions of its axes of symmetry (31) become indefinite: 
the ellipse degenerates into a circle. To this case, in view of (26), correspond the following relations between 
the load elements: 

( p ~ _ p ~ ) 2 + 4 ( p z ) 2 = O ,  ( p ~ + p ~ _ 2 p ) 2 + 4 r 2 # O .  

Specifically, these relations are realized in the case of "overall" extension at infinity ( P ~  = P ~  = P0 and 
P ~  = 0) and arbitrary contour loads [excluding (P0 - p)2 + r2 = 0]. 

An alternative situation arises when, in place of inequality (30), we have the equality 

1 - m 2 - m 2 = O ,  (33) 

which, by virtue of (26), is equivalent to the following condition imposed on the load: 

( p ~  _ p~)2 + 4(p~)2 = ( p ~  + P~v - 2P)2 + 4v2" (34) 

Then D = 0 and A' = 0. According to the known criteria [7], these conditions imply that Eqs. (27) of the 
full-strength contour give a second-order degenerate quadratic curve, i.e., a pair of coinciding lines which pass 
through the origin, m2x - (1 + ml)y = 0 and (1 - ml)X - rn2y = O, whose slope to the x axis is given by the 
formula tan/3 = (1 - rnl)/m2 = m2/(1 + ml)  resulting from (31) and (33). 

The orifice itself is defined as a segment of these lines. Indeed, the case of (33) can be regarded as the 
limiting value of general condition (30) when m~ + m~ ~ 1. In this passage to the limit, semi-axes (32) of 
the ellipse take the form a:t: = a = 2n and b+ = b = 0, and this indicates that the ellipse degenerates into a 
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rectilinear slot of length 4n directed at an angle/3 to the x axis. Since the length of the slot, unlike the slope, 
depends on the free parameter, in this case, too, the full-strength contours constitute a one-parameter set of 
slots belonging to the same line and having the same center of symmetry. 

In particular, condition (34) is realized for the "overall" tension of intensity P0 ( P ~  = P ~  = P0 and 
P ~  = 0) at infinity and under a normal contour load of the same intensity (p = P0 and v = 0). 

Thus, under a load of the general form, the full-strength contours will be ellipses. But if the load is 
subject to certain conditions, the ellipses degenerate into circles or rectilinear slots. 

In conformal mapping (22), to the polar r, 0 coordinates in the plane of a unit circle correspond 
elliptical coordinates in the plane of the plate. The physical components of stresses and rotation in these 
coordinates Prr, POO, PrO, and wrO are related to the complex components by [8] 

w'(~) pXl, Prr + POO = p2X, 2iwro = 0921 Prr - PO0 + 2iPro - r w'(~) 

Substitution of complex components (24) and of mapping (22) into these relations leads to the following stress 
and rotation fields in the elliptical coordinates: 

Prr = G + E__.~I [(r4 + 1 ) f ( 0 ) -  r2(1 + m 2 + rn2)] + E2(r4 - 1)g(0), 
e s 

Poo = G -  E.__~.I [(r4 + 1)f(0) - r2(1 + m 2 + m2)] - E.._~2 (r 4 _ 1)g(0), (35) 
e s 

Pro = . . . . .  E1 (r 4 1)g(0) E2 (r 4 + 1)f(0) r2(1 + m 2 + rn2~) , WrO = w~y, 
e e 

" r 4 2r2f(O) + m 2 + m2; f(O) ml cos 20 + m2 sin 20; 9(0) m2 cos 20 where G = (1 /2 ) (P~  + P~y), e . . . . .  
ml sin20; and ml ,  m2, and El ,  E2 are determined by expressions (26) and (19). Formulas (28) and (35) solve 
the problem of a full-strength orifice. 
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